Follow
Alexander Heinecke
Alexander Heinecke
Senior Principal Engineer at Intel Labs
Verified email at intel.com - Homepage
Title
Cited by
Cited by
Year
The ELPA library: scalable parallel eigenvalue solutions for electronic structure theory and computational science
A Marek, V Blum, R Johanni, V Havu, B Lang, T Auckenthaler, A Heinecke, ...
Journal of Physics: Condensed Matter 26 (21), 213201, 2014
2952014
A study of BFLOAT16 for deep learning training
D Kalamkar, D Mudigere, N Mellempudi, D Das, K Banerjee, S Avancha, ...
arXiv preprint arXiv:1905.12322, 2019
2862019
Design and implementation of the linpack benchmark for single and multi-node systems based on intelŽ xeon phi coprocessor
A Heinecke, K Vaidyanathan, M Smelyanskiy, A Kobotov, R Dubtsov, ...
2013 IEEE 27th International Symposium on Parallel and Distributed …, 2013
2182013
LIBXSMM: accelerating small matrix multiplications by runtime code generation
A Heinecke, G Henry, M Hutchinson, H Pabst
SC'16: Proceedings of the International Conference for High Performance …, 2016
1962016
Mixed precision training of convolutional neural networks using integer operations
D Das, N Mellempudi, D Mudigere, D Kalamkar, S Avancha, K Banerjee, ...
arXiv preprint arXiv:1802.00930, 2018
1862018
Petascale high order dynamic rupture earthquake simulations on heterogeneous supercomputers
A Heinecke, A Breuer, S Rettenberger, M Bader, AA Gabriel, C Pelties, ...
SC'14: Proceedings of the International Conference for High Performance …, 2014
1642014
ls1 mardyn: The Massively Parallel Molecular Dynamics Code for Large Systems
C Niethammer, S Becker, M Bernreuther, M Buchholz, W Eckhardt, ...
Journal of chemical theory and computation 10 (10), 4455-4464, 2014
1532014
Anatomy of high-performance deep learning convolutions on simd architectures
E Georganas, S Avancha, K Banerjee, D Kalamkar, G Henry, H Pabst, ...
SC18: International Conference for High Performance Computing, Networking …, 2018
1172018
591 TFLOPS multi-trillion particles simulation on SuperMUC
W Eckhardt, A Heinecke, R Bader, M Brehm, N Hammer, H Huber, ...
Supercomputing: 28th International Supercomputing Conference, ISC 2013 …, 2013
1032013
Distgnn: Scalable distributed training for large-scale graph neural networks
V Md, S Misra, G Ma, R Mohanty, E Georganas, A Heinecke, D Kalamkar, ...
Proceedings of the International Conference for High Performance Computing …, 2021
942021
From gpgpu to many-core: Nvidia fermi and intel many integrated core architecture
A Heinecke, M Klemm, HJ Bungartz
Computing in Science & Engineering 14 (2), 78-83, 2012
882012
Sustained petascale performance of seismic simulations with SeisSol on SuperMUC
A Breuer, A Heinecke, S Rettenberger, M Bader, AA Gabriel, C Pelties
Supercomputing: 29th International Conference, ISC 2014, Leipzig, Germany …, 2014
862014
FP8 formats for deep learning
P Micikevicius, D Stosic, N Burgess, M Cornea, P Dubey, R Grisenthwaite, ...
arXiv preprint arXiv:2209.05433, 2022
652022
Leveraging the bfloat16 artificial intelligence datatype for higher-precision computations
G Henry, PTP Tang, A Heinecke
2019 IEEE 26th Symposium on Computer Arithmetic (ARITH), 69-76, 2019
652019
Efficient shared-memory implementation of high-performance conjugate gradient benchmark and its application to unstructured matrices
J Park, M Smelyanskiy, K Vaidyanathan, A Heinecke, DD Kalamkar, X Liu, ...
SC'14: Proceedings of the International Conference for High Performance …, 2014
642014
Performance optimizations for scalable implicit RANS calculations with SU2
TD Economon, D Mudigere, G Bansal, A Heinecke, F Palacios, J Park, ...
Computers & Fluids 129, 146-158, 2016
582016
Petascale local time stepping for the ADER-DG finite element method
A Breuer, A Heinecke, M Bader
2016 IEEE international parallel and distributed processing symposium (IPDPS …, 2016
492016
Parallel matrix multiplication based on space-filling curves on shared memory multicore platforms
A Heinecke, M Bader
Proceedings of the 2008 workshop on Memory access on future processors: a …, 2008
442008
Optimized compute hardware for machine learning operations
D Das, R Gramunt, M Smelyanskiy, J Corbal, D Mudigere, NK Mellempudi, ...
US Patent 10,776,699, 2020
432020
Methods and apparatus to detect anomalies of a monitored system
M Agerstam, B Sadeghi, J Martin, J Ota, J Gottschlich, M Carranza, ...
US Patent 10,802,942, 2020
422020
The system can't perform the operation now. Try again later.
Articles 1–20