A weakly asymptotic preserving low Mach number scheme for the Euler equations of gas dynamics S Noelle, G Bispen, KR Arun, M Lukáčová-Medviďová, CD Munz SIAM Journal on Scientific Computing 36 (6), B989-B1024, 2014 | 114 | 2014 |

IMEX large time step finite volume methods for low Froude number shallow water flows G Bispen, KR Arun, M Lukáčová-Medvid’ová, S Noelle Communications in Computational Physics 16 (2), 307-347, 2014 | 63 | 2014 |

Finite volume evolution Galerkin method for hyperbolic conservation laws with spatially varying flux functions KR Arun, M Kraft, M Lukáčová-Medvid’ová, P Prasad Journal of Computational Physics 228 (2), 565-590, 2009 | 23 | 2009 |

Asymptotic preserving low Mach number accurate IMEX finite volume schemes for the isentropic Euler equations KR Arun, S Samantaray Journal of Scientific Computing 82, 1-32, 2020 | 14 | 2020 |

3-D kinematical conservation laws (KCL): Evolution of a surface in R3–in particular propagation of a nonlinear wavefront KR Arun, P Prasad Wave Motion 46 (5), 293-311, 2009 | 14 | 2009 |

In vitro propagation of Monocot (Costus pictus D. Don)—an antidiabetic medicinal plant AAA Bakrudeen, KR Arun Journal of Agricultural Technology 5, 361-369, 2009 | 14 | 2009 |

An application of 3-D kinematical conservation laws: Propagation of a 3-D wavefront KR Arun, M Lukáčová-Medviďová, P Prasad, SVR Rao SIAM Journal on Applied Mathematics 70 (7), 2604-2626, 2010 | 10 | 2010 |

A second order accurate kinetic relaxation scheme for inviscid compressible flows KR Arun, M Lukáčová-Medvidová, P Prasad, SV Raghurama Rao Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation …, 2013 | 9 | 2013 |

An asymptotic preserving all mach number scheme for the euler equations of gas dynamics KR Arun, S Noelle, M Lukacova-Medvidova, CD Munz preprint, October, 2012 | 9 | 2012 |

A numerical scheme for three-dimensional front propagation and control of Jordan mode KR Arun SIAM Journal on Scientific Computing 34 (2), B148-B178, 2012 | 9 | 2012 |

An asymptotic preserving scheme for low Froude number shallow flows KR Arun, S Noelle Inst. für Geometrie und Praktische Mathematik, 2012 | 7 | 2012 |

Eigenvalues of kinematical conservation laws (KCL) based 3-D weakly nonlinear ray theory (WNLRT) KR Arun, P Prasad Applied Mathematics and Computation 217 (5), 2285-2288, 2010 | 7 | 2010 |

Analysis of an asymptotic preserving low mach number accurate IMEX-RK scheme for the wave equation system KR Arun, AJD Gupta, S Samantaray Applied Mathematics and Computation 411, 126469, 2021 | 6 | 2021 |

A characteristics based genuinely multidimensional discrete kinetic scheme for the Euler equations KR Arun, M Lukáčová-Medviďová Journal of Scientific Computing 55, 40-64, 2013 | 6 | 2013 |

Computational study of shock wave propagation and reflection in a micro shock tube KR Arun, DK Heuy, S Toshiaki HEFAT 2012, 2012 | 6 | 2012 |

A Genuinely multi-dimensional relaxation scheme for hyperbolic conservation laws KR Arun, SV Raghurama Rao, M Lukacova-Medvidova, P Prasad Proceedings of the Seventh Asian CFD Conference, 1029-1039, 2007 | 6 | 2007 |

An asymptotic preserving and energy stable scheme for the barotropic Euler system in the incompressible limit KR Arun, R Ghorai, M Kar Journal of Scientific Computing 97 (3), 73, 2023 | 4 | 2023 |

An implicit–explicit scheme accurate at low Mach numbers for the wave equation system KR Arun, AJ Das Gupta, S Samantaray Theory, Numerics and Applications of Hyperbolic Problems I: Aachen, Germany …, 2018 | 3 | 2018 |

A unified asymptotic preserving and well-balanced scheme for the Euler system with multiscale relaxation KR Arun, M Krishnan, S Samantaray Computers & Fluids 233, 105248, 2022 | 2 | 2022 |

An asymptotic preserving and energy stable scheme for the Euler-Poisson system in the quasineutral limit KR Arun, R Ghorai, M Kar Applied Numerical Mathematics 198, 375-400, 2024 | 1 | 2024 |