Jasper Snoek
Jasper Snoek
Google Brain
Verified email at google.com
Cited by
Cited by
Practical bayesian optimization of machine learning algorithms
J Snoek, H Larochelle, RP Adams
Advances in neural information processing systems, 2951-2959, 2012
Scalable bayesian optimization using deep neural networks
J Snoek, O Rippel, K Swersky, R Kiros, N Satish, N Sundaram, M Patwary, ...
International conference on machine learning, 2171-2180, 2015
Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks
DR Kelley, J Snoek, JL Rinn
Genome research 26 (7), 990-999, 2016
Multi-task bayesian optimization
K Swersky, J Snoek, RP Adams
Advances in neural information processing systems, 2004-2012, 2013
Towards an empirical foundation for assessing bayesian optimization of hyperparameters
K Eggensperger, M Feurer, F Hutter, J Bergstra, J Snoek, H Hoos, ...
NIPS workshop on Bayesian Optimization in Theory and Practice 10, 3, 2013
Bayesian optimization with unknown constraints
MA Gelbart, J Snoek, RP Adams
arXiv preprint arXiv:1403.5607, 2014
Spectral representations for convolutional neural networks
O Rippel, J Snoek, RP Adams
Advances in neural information processing systems, 2449-2457, 2015
Input warping for Bayesian optimization of non-stationary functions
J Snoek, K Swersky, R Zemel, R Adams
International Conference on Machine Learning, 1674-1682, 2014
Freeze-thaw Bayesian optimization
K Swersky, J Snoek, RP Adams
arXiv preprint arXiv:1406.3896, 2014
Winner's curse? On pace, progress, and empirical rigor
D Sculley, J Snoek, A Wiltschko, A Rahimi
Automated detection of unusual events on stairs
J Snoek, J Hoey, L Stewart, RS Zemel, A Mihailidis
Image and Vision Computing 27 (1-2), 153-166, 2009
Deep bayesian bandits showdown: An empirical comparison of bayesian deep networks for thompson sampling
C Riquelme, G Tucker, J Snoek
arXiv preprint arXiv:1802.09127, 2018
Sequential regulatory activity prediction across chromosomes with convolutional neural networks
DR Kelley, YA Reshef, M Bileschi, D Belanger, CY McLean, J Snoek
Genome research 28 (5), 739-750, 2018
Towards a single sensor passive solution for automated fall detection
M Belshaw, B Taati, J Snoek, A Mihailidis
2011 Annual International Conference of the IEEE Engineering in Medicine and …, 2011
Learning latent permutations with gumbel-sinkhorn networks
G Mena, D Belanger, S Linderman, J Snoek
arXiv preprint arXiv:1802.08665, 2018
Nonparametric guidance of autoencoder representations using label information
J Snoek, RP Adams, H Larochelle
Journal of Machine Learning Research 13 (Sep), 2567-2588, 2012
Can you trust your model's uncertainty? Evaluating predictive uncertainty under dataset shift
J Snoek, Y Ovadia, E Fertig, B Lakshminarayanan, S Nowozin, D Sculley, ...
Advances in Neural Information Processing Systems, 13969-13980, 2019
Raiders of the lost architecture: Kernels for Bayesian optimization in conditional parameter spaces
K Swersky, D Duvenaud, J Snoek, F Hutter, MA Osborne
arXiv preprint arXiv:1409.4011, 2014
Machine learning approaches in cardiovascular imaging
M Henglin, G Stein, PV Hushcha, J Snoek, AB Wiltschko, S Cheng
Circulation: Cardiovascular Imaging 10 (10), e005614, 2017
Bayesian optimization and semiparametric models with applications to assistive technology
JR Snoek
University of Toronto, 2013
The system can't perform the operation now. Try again later.
Articles 1–20