Follow
Andrij Vasylenko
Andrij Vasylenko
Verified email at liverpool.ac.uk
Title
Cited by
Cited by
Year
PyOD: A Python Toolbox for Scalable Outlier Detection
Y Zhao, Z Nasrullah, Y Almardeny, AP Camargo, A Vasylenko, Z Li
Journal of Machine Learning Research 20, 1-7, 2019
9582019
Single-Atom Scale Structural Selectivity in Te Nanowires Encapsulated Inside Ultranarrow, Single-Walled Carbon Nanotubes
PVC Medeiros, S Marks, JM Wynn, A Vasylenko, QM Ramasse, D Quigley, ...
ACS nano 11 (6), 6178-6185, 2017
812017
Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry
A Vasylenko, J Gamon, BB Duff, VV Gusev, LM Daniels, M Zanella, ...
Nature communications 12 (1), 5561, 2021
582021
Electronic Structure Control of Sub-nanometer 1D SnTe via Nanostructuring within Single-Walled Carbon Nanotubes
A Vasylenko, S Marks, JM Wynn, PVC Medeiros, QM Ramasse, AJ Morris, ...
ACS nano 12 (6), 6023-6031, 2018
532018
Experimental and theoretical studies on the mechanism for chemical oxidation of multiwalled carbon nanotubes
BM Maciejewska, M Jasiurkowska-Delaporte, AI Vasylenko, KK Kozioł, ...
RSC advances 4 (55), 28826-28831, 2014
442014
Tailoring of the electronic properties of ZnO-polyacrylonitrile nanofibers: Experiment and theory
I Iatsunskyi, A Vasylenko, R Viter, M Kempiński, G Nowaczyk, S Jurga, ...
Applied Surface Science 411, 494-501, 2017
402017
Linear and helical cesium iodide atomic chains in ultranarrow single-walled carbon nanotubes: Impact on optical properties
RJ Kashtiban, MG Burdanova, A Vasylenko, J Wynn, PVC Medeiros, ...
ACS nano 15 (8), 13389-13398, 2021
292021
Encapsulated Nanowires: Boosting Electronic Transport in Carbon Nanotubes
A Vasylenko, J Wynn, PVC Medeiros, AJ Morris, J Sloan, D Quigley
Physical Review B 95 (121408 (R)), 2017
242017
High-entropy transition metal nitride thin films alloyed with Al: Microstructure, phase composition and mechanical properties
AV Pshyk, A Vasylenko, B Bakhit, L Hultman, P Schweizer, TEJ Edwards, ...
Materials & Design 219, 110798, 2022
232022
Li4.3AlS3.3Cl0.7: A Sulfide–Chloride Lithium Ion Conductor with Highly Disordered Structure and Increased Conductivity
J Gamon, MS Dyer, BB Duff, A Vasylenko, LM Daniels, M Zanella, ...
Chemistry of Materials 33 (22), 8733-8744, 2021
232021
Effect of a vacancy in single-walled carbon nanotubes on He and NO adsorption
AI Vasylenko, MV Tokarchuk, S Jurga
The Journal of Physical Chemistry C 119 (9), 5113-5116, 2015
222015
A database of experimentally measured lithium solid electrolyte conductivities evaluated with machine learning
CJ Hargreaves, MW Gaultois, LM Daniels, EJ Watts, VA Kurlin, M Moran, ...
npj Computational Materials 9 (1), 9, 2023
212023
Extended condensed ultraphosphate frameworks with monovalent ions combine lithium mobility with high computed electrochemical stability
G Han, A Vasylenko, AR Neale, BB Duff, R Chen, MS Dyer, Y Dang, ...
Journal of the American Chemical Society 143 (43), 18216-18232, 2021
172021
Superionic lithium transport via multiple coordination environments defined by two-anion packing
G Han, A Vasylenko, LM Daniels, CM Collins, L Corti, R Chen, H Niu, ...
Science 383 (6684), 739-745, 2024
142024
Phase diagram of germanium telluride encapsulated in carbon nanotubes from first-principles searches
JM Wynn, PVC Medeiros, A Vasylenko, J Sloan, D Quigley, AJ Morris
Physical Review Materials 1 (7), 073001, 2017
132017
Element selection for functional materials discovery by integrated machine learning of elemental contributions to properties
A Vasylenko, D Antypov, VV Gusev, MW Gaultois, MS Dyer, ...
npj Computational Materials 9 (1), 164, 2023
72023
Statistical description of hydrodynamic processes in ionic melts while taking into account polarization effects
B Markiv, A Vasylenko, M Tokarchuk
The Journal of Chemical Physics 136 (23), 2012
52012
Ordered Oxygen Vacancies in the Lithium-Rich Oxide Li4CuSbO5.5, a Triclinic Structure Type Derived from the Cubic Rocksalt Structure
AJ Perez, A Vasylenko, TW Surta, H Niu, LM Daniels, LJ Hardwick, ...
Inorganic Chemistry 60 (24), 19022-19034, 2021
42021
Inferring energy–composition relationships with Bayesian optimization enhances exploration of inorganic materials
A Vasylenko, BM Asher, CM Collins, MW Gaultois, GR Darling, MS Dyer, ...
The Journal of Chemical Physics 160 (5), 2024
2*2024
Statistically derived proxy potentials accelerate geometry optimization of crystal structures
D Antypov, CM Collins, A Vasylenko, VV Gusev, MW Gaultois, GR Darling, ...
ChemPhysChem, e202400254, 2024
12024
The system can't perform the operation now. Try again later.
Articles 1–20