Nontrivial solutions of Kirchhoff-type problems via the Yang index K Perera, Z Zhang Journal of differential equations 221 (1), 246-255, 2006 | 609 | 2006 |

Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow Z Zhang, K Perera Journal of Mathematical Analysis and Applications 317 (2), 456-463, 2006 | 481 | 2006 |

Multiple positive solutions of singular and nonsingular discrete problems via variational methods RP Agarwal, K Perera, D O'Regan Nonlinear Analysis: Theory, Methods & Applications 58 (1-2), 69-73, 2004 | 259 | 2004 |

Existence results for fractional p-Laplacian problems via Morse theory A Iannizzotto, S Liu, K Perera, M Squassina Advances in Calculus of Variations 9 (2), 101-125, 2016 | 242 | 2016 |

Multiple positive solutions of singular discrete *p*-Laplacian problems via variational methodsRP Agarwal, K Perera, D O'Regan Advances in difference Equations 2005, 1-7, 2005 | 205 | 2005 |

Morse Theoretic Aspects of -Laplacian Type Operators K Perera, RP Agarwal, D O'Regan American Mathematical Soc., 2010 | 185 | 2010 |

The Brezis–Nirenberg problem for the fractional *p*-LaplacianS Mosconi, K Perera, M Squassina, Y Yang Calculus of Variations and Partial Differential Equations 55, 1-25, 2016 | 149 | 2016 |

Nontrivial critical groups in -Laplacian problems via the Yang index K Perera | 119 | 2003 |

Basic properties of Sobolev's spaces on time scales RP Agarwal, V Otero–Espinar, K Perera, DR Vivero Advances in Difference Equations 2006, 1-14, 2006 | 116 | 2006 |

Bifurcation and multiplicity results for critical fractional *p*‐Laplacian problemsK Perera, M Squassina, Y Yang Mathematische Nachrichten 289 (2-3), 332-342, 2016 | 109 | 2016 |

Existence results for double-phase problems via Morse theory K Perera, M Squassina Communications in Contemporary Mathematics 20 (02), 1750023, 2018 | 108 | 2018 |

Sign-changing and multiple solutions for the p-Laplacian S Carl, K Perera Abstract and Applied Analysis 7 (12), 613, 2002 | 73 | 2002 |

Existence and multiplicity of positive solutions for singular quasilinear problems K Perera, EAB Silva Journal of mathematical analysis and applications 323 (2), 1238-1252, 2006 | 72 | 2006 |

Multiple positive solutions of singular p-Laplacian problems by variational methods K Perera, Z Zhang Boundary Value Problems 2005 (3), 377-382, 2005 | 72 | 2005 |

Some remarks on the Fucik spectrum of the p-Laplacian and critical groups N Dancer, K Perera arXiv preprint math/0011131, 2000 | 64 | 2000 |

Multiplicity results for some elliptic problems with concave nonlinearities K Perera journal of differential equations 140 (1), 133-141, 1997 | 62 | 1997 |

Multiple positive solutions for a class of quasilinear elliptic boundary-value problems. K Perera Electronic Journal of Differential Equations (EJDE)[electronic only] 2003 …, 2003 | 55 | 2003 |

p-Laplacian problems where the nonlinearity crosses an eigenvalue K Perera, A Szulkin Discrete and Continuous Dynamical Systems 13 (3), 743, 2005 | 52 | 2005 |

On a class of critical (*p*,* q*)-Laplacian problemsP Candito, SA Marano, K Perera Nonlinear Differential Equations and Applications NoDEA 22, 1959-1972, 2015 | 46 | 2015 |

Multiplicity of solutions for a quasilinear elliptic problem via the cohomological index E Medeiros, K Perera Nonlinear Analysis: Theory, Methods & Applications 71 (9), 3654-3660, 2009 | 46 | 2009 |