Caffe: Convolutional architecture for fast feature embedding Y Jia, E Shelhamer, J Donahue, S Karayev, J Long, R Girshick, ... Proceedings of the 22nd ACM international conference on Multimedia, 675-678, 2014 | 12319 | 2014 |
Rich feature hierarchies for accurate object detection and semantic segmentation R Girshick, J Donahue, T Darrell, J Malik Proceedings of the IEEE conference on computer vision and pattern …, 2014 | 10813 | 2014 |
Long-term recurrent convolutional networks for visual recognition and description J Donahue, L Anne Hendricks, S Guadarrama, M Rohrbach, ... Proceedings of the IEEE conference on computer vision and pattern …, 2015 | 3274 | 2015 |
Decaf: A deep convolutional activation feature for generic visual recognition J Donahue, Y Jia, O Vinyals, J Hoffman, N Zhang, E Tzeng, T Darrell International conference on machine learning, 647-655, 2014 | 3265 | 2014 |
Context encoders: Feature learning by inpainting D Pathak, P Krahenbuhl, J Donahue, T Darrell, AA Efros Proceedings of the IEEE conference on computer vision and pattern …, 2016 | 1372 | 2016 |
Region-based convolutional networks for accurate object detection and segmentation R Girshick, J Donahue, T Darrell, J Malik IEEE transactions on pattern analysis and machine intelligence 38 (1), 142-158, 2015 | 1031 | 2015 |
Sequence to sequence-video to text S Venugopalan, M Rohrbach, J Donahue, R Mooney, T Darrell, K Saenko Proceedings of the IEEE international conference on computer vision, 4534-4542, 2015 | 718 | 2015 |
Adversarial feature learning J Donahue, P Krähenbühl, T Darrell arXiv preprint arXiv:1605.09782, 2016 | 657 | 2016 |
Part-based R-CNNs for fine-grained category detection N Zhang, J Donahue, R Girshick, T Darrell European conference on computer vision, 834-849, 2014 | 653 | 2014 |
Translating videos to natural language using deep recurrent neural networks S Venugopalan, H Xu, J Donahue, M Rohrbach, R Mooney, K Saenko arXiv preprint arXiv:1412.4729, 2014 | 586 | 2014 |
Large scale GAN training for high fidelity natural image synthesis A Brock, J Donahue, K Simonyan arXiv preprint arXiv:1809.11096, 2018 | 450 | 2018 |
Generating visual explanations LA Hendricks, Z Akata, M Rohrbach, J Donahue, B Schiele, T Darrell European Conference on Computer Vision, 3-19, 2016 | 220 | 2016 |
Efficient learning of domain-invariant image representations J Hoffman, E Rodner, J Donahue, T Darrell, K Saenko arXiv preprint arXiv:1301.3224, 2013 | 219 | 2013 |
LSDA: Large scale detection through adaptation J Hoffman, S Guadarrama, ES Tzeng, R Hu, J Donahue, R Girshick, ... Advances in Neural Information Processing Systems, 3536-3544, 2014 | 211 | 2014 |
Population based training of neural networks M Jaderberg, V Dalibard, S Osindero, WM Czarnecki, J Donahue, ... arXiv preprint arXiv:1711.09846, 2017 | 152 | 2017 |
Data-dependent initializations of convolutional neural networks P Krähenbühl, C Doersch, J Donahue, T Darrell arXiv preprint arXiv:1511.06856, 2015 | 126 | 2015 |
Semi-supervised domain adaptation with instance constraints J Donahue, J Hoffman, E Rodner, K Saenko, T Darrell Proceedings of the IEEE conference on computer vision and pattern …, 2013 | 102 | 2013 |
Visual search at pinterest Y Jing, D Liu, D Kislyuk, A Zhai, J Xu, J Donahue, S Tavel Proceedings of the 21th ACM SIGKDD International Conference on Knowledge …, 2015 | 80 | 2015 |
Asymmetric and category invariant feature transformations for domain adaptation J Hoffman, E Rodner, J Donahue, B Kulis, K Saenko International journal of computer vision 109 (1-2), 28-41, 2014 | 65 | 2014 |
Annotator rationales for visual recognition J Donahue, K Grauman 2011 International Conference on Computer Vision, 1395-1402, 2011 | 65 | 2011 |