Follow
Dandan Tu
Dandan Tu
Wellman Center for Photomedicine, Massachusetts General Hospital
Verified email at mgh.harvard.edu
Title
Cited by
Cited by
Year
A review of biosensor technologies for blood biomarkers toward monitoring cardiovascular diseases at the point-of-care
M Ouyang, D Tu, L Tong, M Sarwar, A Bhimaraj, C Li, GL Cote, D Di Carlo
Biosensors and Bioelectronics 171, 112621, 2021
902021
A SERS aptasensor for sensitive and selective detection of bis (2-ethylhexyl) phthalate
D Tu, JT Garza, GL Coté
RSC advances 9 (5), 2618-2625, 2019
372019
Aptamer-based surface-enhanced resonance Raman scattering assay on a paper fluidic platform for detection of cardiac troponin I
D Tu, A Holderby, GL Coté
Journal of biomedical optics 25 (9), 097001-097001, 2020
202020
Disposable L-lactate biosensor based on a screen-printed carbon electrode enhanced by graphene
D Tu, Y He, Y Rong, Y Wang, G Li
Measurement Science and Technology 27 (4), 045108, 2016
182016
Paper microfluidic device with a horizontal motion valve and a localized delay for automatic control of a multistep assay
D Tu, A Holderby, J Dean, S Mabbott, GL Coté
Analytical Chemistry 93 (10), 4497-4505, 2021
152021
Benzene derivatives analysis using aluminum nitride waveguide raman sensors
M Makela, P Gordon, D Tu, C Soliman, GL Coté, K Maitland, PT Lin
Analytical Chemistry 92 (13), 8917-8922, 2020
142020
Spectrally multiplexed assay using gap enhanced nanoparticle for detection of a myocardial infarction biomarker panel
D Tu, A Holderby, H Guo, S Mabbott, L Tian, GL Coté
Analytica Chimica Acta 1198, 339562, 2022
122022
Synthesis of SERS-active core–satellite nanoparticles using heterobifunctional PEG linkers
AMT San Juan, SR Chavva, D Tu, M Tircuit, G Coté, S Mabbott
Nanoscale Advances 4 (1), 258-267, 2022
82022
Instantaneous topical drug quantification using a 3D printed microfluidic device and coherent Raman imaging
BA Kuzma, D Tu, A Goss, F Iliopoulos, JB Slade, A Wiatrowski, A Feizpour, ...
OpenNano 12, 100151, 2023
42023
Exploring the clinical utility of raman spectroscopy for point-of-care cardiovascular disease biomarker detection
C Soliman, J Faircloth, D Tu, S Mabbott, K Maitland, G Coté
Applied Spectroscopy 77 (10), 1181-1193, 2023
32023
A polarity-sensitive far-red fluorescent probe for glucose sensing through skin
L Colvin, D Tu, D Dunlap, A Rios, G Coté
Biosensors 13 (8), 788, 2023
22023
Development of a paper microfluidic surface enhanced Raman scattering assay for cardiac troponin I
D Tu, J Dean, A Holderby, M Schechinger, GL Coté
Optical Diagnostics and Sensing XX: Toward Point-of-Care Diagnostics 11247 …, 2020
22020
Determining topical product bioequivalence with stimulated Raman scattering microscopy
F Iliopoulos, D Tu, IJ Pence, X Li, P Ghosh, MC Luke, SG Raney, ...
Journal of Controlled Release 367, 864-876, 2024
12024
Portable, multi-modal Raman and fluorescence spectroscopic platform for point-of-care applications
C Soliman, D Tu, S Mabbott, G Coté, K Maitland
Journal of Biomedical Optics 27 (9), 095006-095006, 2022
12022
Dual modality monitoring of topical formulations within human skin using stimulated Raman scattering (SRS) microscope
D Tu, NS Lemberger, K Wallmeier, J Riseman, BA Kuzma, Y Wei, ...
Visualizing and Quantifying Drug Distribution in Tissue VIII, PC1282104, 2024
2024
Paper-based low-cost microfluidic devices for automatic multistep processes
D Tu, GL Coté, S Mabbott, J Dean
US Patent App. 17/512,787, 2022
2022
A low-cost, paper fluidic platform to detect B-type Natriuretic Peptide (BNP) for Congestive Heart Failure (CHF)
N Chaturvedi, R Arias, D Tu, S Mabbott, GL Coté
Optical Diagnostics and Sensing XXII: Toward Point-of-Care Diagnostics 11968 …, 2022
2022
The system can't perform the operation now. Try again later.
Articles 1–17