Approximation theory using positive linear operators R Paltanea Springer Science & Business Media, 2004 | 135 | 2004 |

Simultaneous approximation by a class of Bernstein-Durrmeyer operators preserving linear functions H Gonska, R Păltănea Czechoslovak mathematical journal 60 (3), 783-799, 2010 | 75 | 2010 |

Modified Szász-Mirakjan operators of integral form R Păltănea Carpathian Journal of Mathematics, 378-385, 2008 | 64 | 2008 |

A class of Durrmeyer type operators preserving linear functions R Paltanea Ann. Tiberiu Popoviciu Sem. Funct. Equat. Approxim. Convex.(Cluj-Napoca) 5 …, 2007 | 57 | 2007 |

Quantitative convergence theorems for a class of Bernstein–Durrmeyer operators preserving linear functions H Gonska, R Peltenia Український математичний журнал, 2010 | 43 | 2010 |

Sur un opérateur polynomial defini sur l’ensemble des fonctions intégrables R Paltanea Itinerant Seminar on Functional Equations, Approximation andConvexity, Cluj …, 1983 | 40 | 1983 |

Optimal estimates with moduli of continuity R Păltănea Results in Mathematics 32 (3), 318-331, 1997 | 34 | 1997 |

General Voronovskaya and asymptotic theorems in simultaneous approximation H Gonska, R Păltănea Mediterranean journal of mathematics 7 (1), 37-49, 2010 | 28 | 2010 |

GENERAL ESTIMATEs FoR. THE DITZIAN–TOTIK I Gavrea, H GoNsKA, R PĂLTĂNEA EAST JOURNAL, ON APPROXIMATIONS 9 (2), 175-194, 2003 | 24 | 2003 |

Simultaneous Approximation by a Class of Szász-Mirakjan Operators. R Păltănea Journal of Applied Functional Analysis 9, 2014 | 21 | 2014 |

Best constants in estimates with second order moduli of continuity R Paltanea MATHEMATICAL RESEARCH 86, 251-276, 1995 | 18 | 1995 |

Estimates of approximation in terms of a weighted modulus of continuity R Paltanea Bulletin of the Transilvania University of Brasov. Mathematics, Informatics …, 2011 | 15 | 2011 |

REPRESENTATION OF THE K-FUNCTIONAL K (f, C [a, b], C 1 [a, b],.)-A NEW APPROACH. R Păltănea Bulletin of the Transilvania University of Brasov, Series III: Mathematics …, 2010 | 15 | 2010 |

Optimal constant in approximation by Bernstein operators R Păltănea Journal of Computational Analysis and Applications 5 (2), 195-235, 2003 | 14 | 2003 |

The Durrmeyer variant of an operator defined by DD Stancu U Abel, M Ivan, R Păltănea Applied Mathematics and Computation 259, 116-123, 2015 | 11 | 2015 |

Geometric series of Bernstein operators revisited U Abel, M Ivan, R Păltănea Journal of Mathematical Analysis and Applications 400 (1), 22-24, 2013 | 10 | 2013 |

On some constants in approximation by Bernstein operators R Paltanea General Mathematics 16 (4), 137148, 2008 | 10 | 2008 |

The power series of Bernstein operators R Paltanea Autom. Comput. Appl. Math 15, 247-253, 2006 | 10 | 2006 |

The preservation of the property of the quasiconvexity of higher order by Bernstein's operators R Păltănea Revue d'Analyse Numérique et de Théorie de l'Approximation, 195-201, 1996 | 10 | 1996 |

Improved estimates for the triangle inequality N Minculete, R Păltănea Journal of inequalities and applications 2017 (1), 1-12, 2017 | 9 | 2017 |