A second-order accurate numerical method for a fractional wave equation W McLean, K Mustapha Numerische Mathematik 105, 481-510, 2007 | 188 | 2007 |

Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations K Mustapha, W McLean SIAM Journal on Numerical Analysis 51 (1), 491-515, 2013 | 182 | 2013 |

A discontinuous Petrov--Galerkin method for time-fractional diffusion equations K Mustapha, B Abdallah, KM Furati SIAM Journal on Numerical Analysis 52 (5), 2512-2529, 2014 | 133 | 2014 |

Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation W McLean, K Mustapha Numerical Algorithms 52, 69-88, 2009 | 112 | 2009 |

An implicit finite-difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements K Mustapha IMA Journal of Numerical Analysis 31 (2), 719-739, 2011 | 104 | 2011 |

Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation K Mustapha, W McLean Numerical Algorithms 56, 159-184, 2011 | 100 | 2011 |

Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations K Mustapha, D Schötzau IMA Journal of Numerical Analysis 34 (4), 1426-1446, 2014 | 99 | 2014 |

A new approach to simulating flow in discrete fracture networks with an optimized mesh H Mustapha, K Mustapha SIAM Journal on Scientific Computing 29 (4), 1439-1459, 2007 | 99 | 2007 |

Time-stepping error bounds for fractional diffusion problems with non-smooth initial data W McLean, K Mustapha Journal of Computational Physics 293, 201-217, 2015 | 88 | 2015 |

Time-stepping discontinuous Galerkin methods for fractional diffusion problems K Mustapha Numerische Mathematik 130 (3), 497-516, 2015 | 81 | 2015 |

Numerical solution of the time-fractional Fokker--Planck equation with general forcing KN Le, W McLean, K Mustapha SIAM Journal on Numerical Analysis 54 (3), 1763-1784, 2016 | 76 | 2016 |

Uniform convergence for a discontinuous Galerkin, time-stepping method applied to a fractional diffusion equation K Mustapha, W McLean IMA Journal of Numerical Analysis 32 (3), 906-925, 2012 | 69 | 2012 |

Discontinuous Galerkin method for an evolution equation with a memory term of positive type K Mustapha, W McLean Mathematics of computation 78 (268), 1975-1995, 2009 | 65 | 2009 |

Finite volume element method for two-dimensional fractional subdiffusion problems S Karaa, K Mustapha, AK Pani IMA Journal of Numerical Analysis 37 (2), 945-964, 2017 | 60 | 2017 |

An Approximation for a Fractional Reaction-Diffusion Equation, a Second-Order Error Analysis over Time-Graded Meshes K Mustapha SIAM Journal on Numerical Analysis 58 (2), 1319-1338, 2020 | 59 | 2020 |

A hybridizable discontinuous Galerkin method for fractional diffusion problems B Cockburn, K Mustapha Numerische Mathematik 130, 293-314, 2015 | 56 | 2015 |

An -Version Discontinuous Galerkin Method for Integro-Differential Equations of Parabolic Type K Mustapha, H Brunner, H Mustapha, D Schötzau SIAM journal on numerical analysis 49 (4), 1369-1396, 2011 | 56 | 2011 |

A second-order accurate numerical method for a semilinear integro-differential equation with a weakly singular kernel K Mustapha, H Mustapha IMA journal of numerical analysis 30 (2), 555-578, 2010 | 53 | 2010 |

Well-posedness of time-fractional advection-diffusion-reaction equations W McLean, K Mustapha, R Ali, O Knio Fractional Calculus and Applied Analysis 22 (4), 918-944, 2019 | 51 | 2019 |

FEM for time-fractional diffusion equations, novel optimal error analyses K Mustapha Mathematics of Computation 87 (313), 2259-2272, 2018 | 50 | 2018 |