Varun Shankar
Varun Shankar
School of Computing, University of Utah
Verified email at - Homepage
Cited by
Cited by
A Radial Basis Function (RBF)-Finite Difference (FD) Method for Diffusion and Reaction-Diffusion Equations on Surfaces
V Shankar, GB Wright, RM Kirby, AL Fogelson
Journal of Scientific Computing, 2014
A radial basis function (RBF) compact finite difference (FD) scheme for reaction-diffusion equations on surfaces
E Lehto, V Shankar, GB Wright
SIAM Journal on Scientific Computing 39 (5), A2129-A2151, 2017
The Overlapped Radial Basis Function-Finite Difference (RBF-FD) Method: A Generalization of RBF-FD
V Shankar
Journal of Computational Physics, 2017
A radial basis function (RBF) finite difference method for the simulation of reaction–diffusion equations on stationary platelets within the augmented forcing method
V Shankar, GB Wright, AL Fogelson, RM Kirby
International Journal for Numerical Methods in Fluids 75 (1), 1-22, 2014
Robust node generation for meshfree discretizations on irregular domains and surfaces
V Shankar, RM Kirby, AL Fogelson
SIAM Journal on Scientific Computing 40 (4), A2584-A2607, 2018
Mesh-free semi-Lagrangian methods for transport on a sphere using radial basis functions
V Shankar, GB Wright
Journal of Computational Physics 366, 170-190, 2018
A study of different modeling choices for simulating platelets within the immersed boundary method
V Shankar, GB Wright, AL Fogelson, RM Kirby
Applied Numerical Mathematics 63, 58-77, 2013
Hyperviscosity-Based Stabilization for Radial Basis Function-Finite Difference (RBF-FD) Discretizations of Advection-Diffusion Equations
V Shankar, AL Fogelson
Journal of Computational Physics 372, 616-639, 2018
A high-order radial basis function (RBF) Leray projection method for the solution of the incompressible unsteady Stokes equations
EJ Fuselier, V Shankar, GB Wright
Computers & Fluids 128, 41-52, 2016
RBF-LOI: Augmenting radial basis functions (RBFs) with least orthogonal interpolation (LOI) for solving PDEs on surfaces
V Shankar, A Narayan, RM Kirby
Journal of Computational Physics 373, 722-735, 2018
Augmenting the Immersed Boundary Method with Radial Basis Functions (RBFs) for the Modeling of Platelets in Hemodynamic Flows
V Shankar, GB Wright, RM Kirby, AL Fogelson
International Journal for Numerical Methods in Fluids, 2015
3-D FDTD modeling of electromagnetic wave propagation in magnetized plasma requiring singular updates to the current density equation
S Pokhrel, V Shankar, JJ Simpson
IEEE Transactions on Antennas and Propagation 66 (9), 4772-4781, 2018
Radial basis function (RBF)‐based parametric models for closed and open curves within the method of regularized stokeslets
V Shankar, SD Olson
International Journal for Numerical Methods in Fluids 79 (6), 269-289, 2015
A Robust Hyperviscosity Formulation for Stable RBF-FD Discretizations of Advection-Diffusion-Reaction Equations on Manifolds
V Shankar, GB Wright, A Narayan
SIAM Journal on Scientific Computing 42 (4), A2371-A2401, 2020
Asymptotic and numerical analysis of a stochastic PDE model of volume transmission
SD Lawley, V Shankar
Multiscale Modeling & Simulation 18 (2), 887-915, 2020
Curvilinear Mesh Adaptation Using Radial Basis Function Interpolation and Smoothing
V Zala, V Shankar, SP Sastry, RM Kirby
Journal of Scientific Computing 77 (1), 397-418, 2018
Towards an Extrinsic, CG-XFEM Approach Based on Hierarchical Enrichments for Modeling Progressive Fracture
MK Ballard, R Amici, V Shankar, LA Ferguson, M Braginsky, RM Kirby
arXiv preprint arXiv:2104.14704, 2021
A fine-grained parallelization of the immersed boundary method
A Kassen, V Shankar, AL Fogelson
arXiv preprint arXiv:2012.06646, 2020
Pump efficacy in a fluid-structure-interaction model of a chain of contracting lymphangions
H Elich, A Barrett, V Shankar, AL Fogelson
arXiv preprint arXiv:2012.05377, 2020
An Efficient High-Order Meshless Method for Advection-Diffusion Equations on Time-Varying Irregular Domains
V Shankar, GB Wright, AL Fogelson
arXiv preprint arXiv:2011.06715, 2020
The system can't perform the operation now. Try again later.
Articles 1–20