A multi-horizon quantile recurrent forecaster R Wen, K Torkkola, B Narayanaswamy, D Madeka arXiv preprint arXiv:1711.11053, 2017 | 217 | 2017 |
Scatteract: Automated extraction of data from scatter plots M Cliche, D Rosenberg, D Madeka, C Yee Joint European conference on machine learning and knowledge discovery in …, 2017 | 53 | 2017 |
Mqtransformer: Multi-horizon forecasts with context dependent and feedback-aware attention C Eisenach, Y Patel, D Madeka arXiv preprint arXiv:2009.14799, 2020 | 12 | 2020 |
All roads lead to quantitative finance NN Taleb, D Madeka Quantitative Finance 19 (11), 1775-1776, 2019 | 4 | 2019 |
Sample path generation for probabilistic demand forecasting D Madeka, L Swiniarski, D Foster, L Razoumov, K Torkkola, R Wen ICML workshop on Theoretical Foundations and Applications of Deep Generative …, 2018 | 4 | 2018 |
Accurate prediction of electoral outcomes D Madeka arXiv preprint arXiv:1704.02664, 2017 | 3 | 2017 |
MQRetNN: Multi-Horizon Time Series Forecasting with Retrieval Augmentation S Yang, C Eisenach, D Madeka arXiv preprint arXiv:2207.10517, 2022 | | 2022 |
A Few Expert Queries Suffices for Sample-Efficient RL with Resets and Linear Value Approximation P Amortila, N Jiang, D Madeka, DP Foster arXiv preprint arXiv:2207.08342, 2022 | | 2022 |
A Framework for the Meta-Analysis of Randomized Experiments with Applications to Heavy-Tailed Response Data N Tripuraneni, D Madeka, D Foster, D Perrault-Joncas, MI Jordan arXiv preprint arXiv:2112.07602, 2021 | | 2021 |
Estimating Covariance Matrices for Investments Whose Histories Differ in Length D Madeka, W Nilsen Available at SSRN 2331085, 2013 | | 2013 |