Samuel S. Schoenholz
Samuel S. Schoenholz
Google Brain
Verified email at - Homepage
Cited by
Cited by
Neural message passing for quantum chemistry
J Gilmer, SS Schoenholz, PF Riley, O Vinyals, GE Dahl
International Conference on Machine Learning, 1263-1272, 2017
Deep neural networks as gaussian processes
J Lee, Y Bahri, R Novak, SS Schoenholz, J Pennington, J Sohl-Dickstein
arXiv preprint arXiv:1711.00165, 2017
Prediction errors of molecular machine learning models lower than hybrid DFT error
FA Faber, L Hutchison, B Huang, J Gilmer, SS Schoenholz, GE Dahl, ...
Journal of Chemical Theory and Computation, 2017
Wide neural networks of any depth evolve as linear models under gradient descent
J Lee, L Xiao, SS Schoenholz, Y Bahri, R Novak, J Sohl-Dickstein, ...
arXiv preprint arXiv:1902.06720, 2019
Adversarial spheres
J Gilmer, L Metz, F Faghri, SS Schoenholz, M Raghu, M Wattenberg, ...
arXiv preprint arXiv:1801.02774, 2018
A structural approach to relaxation in glassy liquids
SS Schoenholz, ED Cubuk, DM Sussman, E Kaxiras, AJ Liu
Nature Physics 12, 469-471, 2016
Identifying structural flow defects in disordered solids using machine-learning methods
ED Cubuk, SS Schoenholz, JM Rieser, BD Malone, J Rottler, DJ Durian, ...
Physical review letters 114 (10), 108001, 2015
Deep information propagation
SS Schoenholz, J Gilmer, S Ganguli, J Sohl-Dickstein
arXiv preprint arXiv:1611.01232, 2016
Dynamical isometry and a mean field theory of cnns: How to train 10,000-layer vanilla convolutional neural networks
L Xiao, Y Bahri, J Sohl-Dickstein, S Schoenholz, J Pennington
International Conference on Machine Learning, 5393-5402, 2018
Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice
J Pennington, SS Schoenholz, S Ganguli
arXiv preprint arXiv:1711.04735, 2017
Structure-property relationships from universal signatures of plasticity in disordered solids
ED Cubuk, RJS Ivancic, SS Schoenholz, DJ Strickland, A Basu, ...
Science 358 (6366), 1033-1037, 2017
Mean Field Residual Networks: On the Edge of Chaos
G Yang, SS Schoenholz
arXiv preprint arXiv:1712.08969, 2017
A mean field theory of batch normalization
G Yang, J Pennington, V Rao, J Sohl-Dickstein, SS Schoenholz
arXiv preprint arXiv:1902.08129, 2019
The emergence of spectral universality in deep networks
J Pennington, S Schoenholz, S Ganguli
International Conference on Artificial Intelligence and Statistics, 1924-1932, 2018
Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks
M Chen, J Pennington, S Schoenholz
International Conference on Machine Learning, 873-882, 2018
Relationship between local structure and relaxation in out-of-equilibrium glassy systems
SS Schoenholz, ED Cubuk, E Kaxiras, AJ Liu
Proceedings of the National Academy of Sciences 114 (2), 263-267, 2017
Predicting plasticity with soft vibrational modes: From dislocations to glasses
J Rottler, SS Schoenholz, AJ Liu
Physical Review E 89 (4), 042304, 2014
Understanding plastic deformation in thermal glasses from single-soft-spot dynamics
SS Schoenholz, AJ Liu, RA Riggleman, J Rottler
Physical Review X 4 (3), 031014, 2014
Unveiling the predictive power of static structure in glassy systems
V Bapst, T Keck, A Grabska-Barwińska, C Donner, ED Cubuk, ...
Nature Physics 16 (4), 448-454, 2020
Intriguing properties of adversarial examples
ED Cubuk, B Zoph, SS Schoenholz, QV Le
arXiv preprint arXiv:1711.02846, 2017
The system can't perform the operation now. Try again later.
Articles 1–20