A non-subjective approach to the GP algorithm for analysing noisy time series KP Harikrishnan, R Misra, G Ambika, AK Kembhavi Physica D: Nonlinear Phenomena 215 (2), 137-145, 2006 | 71 | 2006 |

The nonlinear behavior of the black hole system GRS 1915+ 105 R Misra, KP Harikrishnan, G Ambika, AK Kembhavi The Astrophysical Journal 643 (2), 1114, 2006 | 37 | 2006 |

The chaotic behavior of the black hole system GRS 1915+ 105 R Misra, KP Harikrishnan, B Mukhopadhyay, G Ambika, AK Kembhavi The Astrophysical Journal 609 (1), 313, 2004 | 36 | 2004 |

Uniform framework for the recurrence-network analysis of chaotic time series R Jacob, KP Harikrishnan, R Misra, G Ambika Physical Review E 93 (1), 012202, 2016 | 26 | 2016 |

Nonlinear time series analysis of the light curves from the black hole system GRS1915+ 105 KP Harikrishnan, R Misra, G Ambika Research in Astronomy and Astrophysics 11 (1), 71, 2011 | 22 | 2011 |

Combined use of correlation dimension and entropy as discriminating measures for time series analysis KP Harikrishnan, R Misra, G Ambika Communications in Nonlinear Science and Numerical Simulation 14 (9-10), 3608 …, 2009 | 20 | 2009 |

Measure for degree heterogeneity in complex networks and its application to recurrence network analysis R Jacob, KP Harikrishnan, R Misra, G Ambika Royal Society open science 4 (1), 160757, 2017 | 18 | 2017 |

Revisiting the box counting algorithm for the correlation dimension analysis of hyperchaotic time series KP Harikrishnan, R Misra, G Ambika Communications in Nonlinear Science and Numerical Simulation 17 (1), 263-276, 2012 | 18 | 2012 |

Computing the multifractal spectrum from time series: an algorithmic approach KP Harikrishnan, R Misra, G Ambika, RE Amritkar Chaos: An Interdisciplinary Journal of Nonlinear Science 19 (4), 043129, 2009 | 18 | 2009 |

Computing the multifractal spectrum from time series: An algorithmic approach R Mishra, KP Harikrishnan, RE Amritkar, G AMBIKA AIP Publishing, 2009 | 18 | 2009 |

Characterization of chaotic attractors under noise: A recurrence network perspective R Jacob, KP Harikrishnan, R Misra, G Ambika Communications in Nonlinear Science and Numerical Simulation 41, 32-47, 2016 | 15 | 2016 |

Universal behaviour in a “modulated” logistic map KP Harikrishnan, VM Nandakumaran Physics Letters A 125 (9), 465-468, 1987 | 12 | 1987 |

Detecting abnormality in heart dynamics from multifractal analysis of ECG signals SM Shekatkar, Y Kotriwar, KP Harikrishnan, G Ambika Scientific reports 7 (1), 15127, 2017 | 11 | 2017 |

Stochastic resonance and chaotic resonance in bimodal maps: A case study G Ambika, NV Sujatha, KP Harikrishnan Pramana 59 (3), 539-545, 2002 | 11 | 2002 |

Bifurcation structure and Lyapunov exponents of a modulated logistic map KP Harikrishnan, VM Nandakumaran Pramana 29 (6), 533-542, 1987 | 10 | 1987 |

Lattice stochastic resonance in coupled map lattice G Ambika, K Menon, KP Harikrishnan EPL (Europhysics Letters) 73 (4), 506, 2006 | 9 | 2006 |

Can recurrence networks show small-world property? R Jacob, KP Harikrishnan, R Misra, G Ambika Physics Letters A 380 (35), 2718-2723, 2016 | 8 | 2016 |

Numerical exploration of the parameter plane in a discrete predator–prey model PP Saratchandran, KC Ajithprasad, KP Harikrishnan Ecological Complexity 21, 112-119, 2015 | 8 | 2015 |

Recurrence network measures for hypothesis testing using surrogate data: application to black hole light curves R Jacob, KP Harikrishnan, R Misra, G Ambika Communications in Nonlinear Science and Numerical Simulation 54, 84-99, 2018 | 7 | 2018 |

Resonance phenomena in discrete systems with bichromatic input signal KP Harikrishnan, G Ambika The European Physical Journal B 61 (3), 343-353, 2008 | 7 | 2008 |