Bloom: A 176b-parameter open-access multilingual language model T Le Scao, A Fan, C Akiki, E Pavlick, S Ilić, D Hesslow, R Castagné, ... | 1749 | 2023 |
Pythia: A suite for analyzing large language models across training and scaling S Biderman, H Schoelkopf, QG Anthony, H Bradley, K O’Brien, E Hallahan, ... International Conference on Machine Learning, 2397-2430, 2023 | 986 | 2023 |
Starcoder: may the source be with you! R Li, LB Allal, Y Zi, N Muennighoff, D Kocetkov, C Mou, M Marone, C Akiki, ... arXiv preprint arXiv:2305.06161, 2023 | 810 | 2023 |
Crosslingual generalization through multitask finetuning N Muennighoff, T Wang, L Sutawika, A Roberts, S Biderman, TL Scao, ... arXiv preprint arXiv:2211.01786, 2022 | 688 | 2022 |
Llemma: An open language model for mathematics Z Azerbayev, H Schoelkopf, K Paster, MD Santos, S McAleer, AQ Jiang, ... arXiv preprint arXiv:2310.10631, 2023 | 260 | 2023 |
SantaCoder: don't reach for the stars! LB Allal, R Li, D Kocetkov, C Mou, C Akiki, CM Ferrandis, N Muennighoff, ... arXiv preprint arXiv:2301.03988, 2023 | 222 | 2023 |
Emergent and predictable memorization in large language models S Biderman, U Prashanth, L Sutawika, H Schoelkopf, Q Anthony, ... Advances in Neural Information Processing Systems 36, 2024 | 153 | 2024 |
Folio: Natural language reasoning with first-order logic S Han, H Schoelkopf, Y Zhao, Z Qi, M Riddell, W Zhou, J Coady, D Peng, ... arXiv preprint arXiv:2209.00840, 2022 | 106 | 2022 |
A framework for few-shot language model evaluation, 12 2023 L Gao, J Tow, B Abbasi, S Biderman, S Black, A DiPofi, C Foster, ... URL https://zenodo. org/records/10256836 7, 0 | 93 | |
Proofnet: Autoformalizing and formally proving undergraduate-level mathematics Z Azerbayev, B Piotrowski, H Schoelkopf, EW Ayers, D Radev, J Avigad arXiv preprint arXiv:2302.12433, 2023 | 58 | 2023 |
Bloom+ 1: Adding language support to bloom for zero-shot prompting ZX Yong, H Schoelkopf, N Muennighoff, AF Aji, DI Adelani, K Almubarak, ... arXiv preprint arXiv:2212.09535, 2022 | 55 | 2022 |
Lessons from the trenches on reproducible evaluation of language models S Biderman, H Schoelkopf, L Sutawika, L Gao, J Tow, B Abbasi, AF Aji, ... arXiv preprint arXiv:2405.14782, 2024 | 28 | 2024 |
Consent in crisis: The rapid decline of the ai data commons S Longpre, R Mahari, A Lee, C Lund, H Oderinwale, W Brannon, ... NEURIPS, 2024 | 24 | 2024 |
Social Choice Should Guide AI Alignment in Dealing with Diverse Human Feedback V Conitzer, R Freedman, J Heitzig, WH Holliday, BM Jacobs, N Lambert, ... arXiv preprint arXiv:2404.10271, 2024 | 21 | 2024 |
From decoding to meta-generation: Inference-time algorithms for large language models S Welleck, A Bertsch, M Finlayson, H Schoelkopf, A Xie, G Neubig, ... arXiv preprint arXiv:2406.16838, 2024 | 19 | 2024 |
Why Has Predicting Downstream Capabilities of Frontier AI Models with Scale Remained Elusive? R Schaeffer, H Schoelkopf, B Miranda, G Mukobi, V Madan, A Ibrahim, ... arXiv preprint arXiv:2406.04391, 2024 | 9 | 2024 |
GAIA search: Hugging face and pyserini interoperability for nlp training data exploration A Piktus, O Ogundepo, C Akiki, A Oladipo, X Zhang, H Schoelkopf, ... arXiv preprint arXiv:2306.01481, 2023 | 9 | 2023 |
The responsible foundation model development cheatsheet: A review of tools & resources S Longpre, S Biderman, A Albalak, H Schoelkopf, D McDuff, S Kapoor, ... arXiv preprint arXiv:2406.16746, 2024 | 5 | 2024 |
Suppressing pink elephants with direct principle feedback L Castricato, N Lile, S Anand, H Schoelkopf, S Verma, S Biderman arXiv preprint arXiv:2402.07896, 2024 | 5 | 2024 |
Explicit Knowledge Transfer for Weakly-Supervised Code Generation Z Azerbayev, A Ni, H Schoelkopf, D Radev arXiv preprint arXiv:2211.16740, 2022 | 4 | 2022 |